Worksheet for 2021-09-20

Conceptual questions

Question 1. Suppose $f(x, y)$ is a function and $P \in \mathbb{R}^{2}$ is a should be put in the blank below point such that $\nabla f(P)=\langle 5,12\rangle$. What number should be put in the blank below

$$
\langle 5,12, \ldots\rangle
$$

to get a normal vector for the tangent plane to $z=f(x, y)$ at the point P ? How about a vector parallel to that plane?
Question 2. Suppose $g(x, y)$ is a function, $\mathbf{u}=\langle 3 / 5,4 / 5\rangle$ and $Q \in \mathbb{R}^{2}$ is a point such that $D_{\mathbf{u}} g(Q)=-3$. What number

$$
\left\langle\frac{3}{5}, \frac{4}{5},-\right\rangle
$$

to get a vector parallel to the tangent plane to $z=g(x, y)$ at the point Q ? Is there enough information to obtain a normal vector? What if you were also told that $D_{\mathrm{v}} g(Q)=4$, where $\mathbf{v}=\langle 4 / 5,3 / 5\rangle$?

Computations

Problem 1. This problem is recycled from the last worksheet (we hadn't covered the chain rule at that time).
(a) Suppose that $\mathbf{r}(t)=(x(t), y(t))$ is parametrized by arclength (recall that this means $\left|\mathbf{r}^{\prime}(t)\right|=1$; the particle is "moving at speed $\left.l^{\prime \prime}\right)$. Show that the directional derivative of f in the direction of $\mathbf{r}^{\prime}(t)$ is equal to $\frac{\mathrm{d}}{\mathrm{d} t}(f(\mathbf{r}(t)))$. Hint: Use the chain rule.
(b) Consider the function

$$
f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) .
$$

Using the preceding part, compute $f_{y}(1,0)$. Hint: Use the unit circle. You should not need the derivative of arccosine.

